Himpunanyang satu merupakan himpunan bagian yang lain ; Dua himpunan saling asing (saling lepas) 3. dua himpunan berpotongan atau 4. dua himpunan ekuivalen Berikut ini akan dibahas tiap-tiap hubungan dua himpunan tersebut. A merupakan himpunan bagian dari himpunan B. Pengertian himpunan bagian ini secara formal didefinisikan sebagai
– dalam membahas mengenai ekuivalen perlu penjelasan yang detail sehingga pembaca dapat memahami secara luas di antaranya seperti pengertian himpunan ekuivalen dan contoh himpunan ekuivalen, silahkan anda simak penjelasan lengkapnya dibawah Himpunan EkuivalenAda sebuah kulkas/lemari es yang mana di dalamnya terdapat 3 jenis minuman yakni Teh, Sirup dan Susu yang juga terdapat 3 jenis buah-buahan seperti Apel, Jeruk dan sekarang kita ibaratkan beberapa jenis minuman tersebut adalah himpunan A sedangkan untuk jenis-jenis buah adalah himpunan B, jadi untuk penulisannya adalah sebagai berikutA = { Teh, Sirup, Susu }B = Apel, Jeruk dan Mangga}sekarang coba anda perhatikan pada kedua himpunan diatas, apakah kedua di antaranya ada yang sama?di lihat dari kedua himpunan tersebut yang sama ialah yang memiliki banyak anggotanya, atau dengan kata lain sama-sama 3, yang dapat di tulis nA = 3 dan nB = 3, jadi nA = nB = 3.“himpunan yang memiliki banyak anggota memiliki pengertian sebagai himpunan ekuivalen atau himpunan ekuipoten”“Himpunan ekuivalen merupakan himpunan yang unsurnya tidak sama, akan tetapi memiliki banyak anggota yang sama.” “Sedangkan untuk pengertian dari Himpunan ekuivalen ialah dua himpunan yang mempunyai jumlah anggota sama.”Contoh Soal Himpunan EkuivalenDiketahui Himpunan A = {1, 2, 3}, B = a, b, c}, dan E = {1, ½ , 1/3 , ¼ } mana yang ekuivalen di antara tiga himpunan tersebut?JawabnA = 3, nB = 3, dan nC = 4Jadi nA = nB = 3, maka himpunan A ekuivalen BUntuk lebih jelasnya dari jawaban di atas dapat di uraiakan sebagai berikut“Yang di katakan sebagai himpunan ekuivalen adalah Himpunan A dan B, yang mana jika anggota Himpunan A dan B sama-sama banyak”“Dapat di katakan ekivalen/ sederajad dari Dua himpunan A dan B, yakni banyaknya anggota Eleman pada himpunan A sama dengan banyaknya anggota elemen himpunan B.”Hanya itu saja yang dapat saya sampaikan mengenai himpunan ekuivalen dan contoh himpunan ekuivalen dilengkapi dengan contoh soal serta penjelasannya. semoga dapat bermanfaat dan menambah pengetahuan bagi penulis dan pembaca. terima Juga Pengertian Zona Laut Berdasarkan Kedalamannya Beserta ContohnyaPengertian & Hakikat – Tujuan – Ciri “Pembangunan Berwawasan Lingkungan Lengkap”Bacaan Surat Al Fatihah dan Terjemahanya Lengkap
MatematikaALJABAR Kelas 7 SMPHIMPUNANOperasi HimpunanDiketahui himpunan-himpunan berikut. A = {buku, pensil, bolpen} B = {mobil, truk} C = {x l x < 40, x bilangan asli kelipatan 10} D = {x x faktor prima dari 36} E= {0} F = {} Pasangan himpunan yang ekuivalen adalah...Operasi HimpunanHIMPUNANALJABARMatematikaRekomendasi video solusi lainnya0115Diketahui S = {1, 2, 3, 10} dan A = {x faktor dari 12, x...0041Diketahui A={2,3,4} dan B={1,3}, maka A⋃B adalah ... a...0230Diketahui P={bilangan asli kurang dari 5}, Q={bilangan c...Teks videodi sini ada pertanyaan tentang himpunan diketahui himpunan-himpunan Berikut yang merupakan himpunan ekuivalen adalah 2 himpunan dikatakan ekuivalen jika jumlah anggota dua himpunan 2 himpunan adalah Sama ya, gimana kita bisa? Tuliskan menjadi himpunan. Hah, ya itu kita samakan dengan himpunan b. Ya. Nah ini adalah contohnya saja. Nah berarti dalam hal dalam pertanyaan ini himpunan a. Berarti set tulis ya anggota himpunan a itu ada 3 ya, lalu kemudian di himpunan b yang anggotanya ada dua Nah kemudian Bagaimana dengan Aceh yang c tentunya kita harus tuliskan dulu anggotanya yaitu ada bilangan asli kelipatan 10 dari yang kurang dari 40 10 20 30 berarti 30 nya saya tulis ulang ya 30 nah Berarti disini Himpunan c. Nya saya bisa tulis jumlah anggotanya ada 3 kemudian yang himpunan D faktor prima dari 3 Ya berarti di sini saya bikin 36 ya pohon faktor yaitu dibagi dua 18 dibagi 29 ya kemudian dibagi dengan 3 ya. Sehingga disini kita bisa Tuliskan faktor prima dari 36 yaitu 2 dan 3 berarti disini jumlah anggota himpunan d nya ada 2 lalu kemudian yang himpunan e nya jumlah anggotanya ada 1 kemudian yang himpunan f nya berapa himpunan kosong berarti tidak ada ya berarti di sini Jika kita memasangkan himpunan ekuivalen ada himpunan a dengan C lalu yang kedua himpunan b dengan himpunan D maka ini adalah jawaban Akhirnya sampai jumpa di pertanyaan berikutnya
Duahimpunan a dan b dikatakan ekuivalen, jika n(a) = n(b). Dua himpunan yang tidak kosong dikatakan saling lepas jika kedua himpunan itu tidak mempunyai satu pun anggota yang sama. Dua Himpunan Dikatakan Sama Jika Kedua Himpunan Itu Mempunyai Angota Yang Sama, Baik Banyak Maupun Unsurnya. Biasanya, materi ini diajarkan untuk siswa/i di sekolahSuatupersamaan yang ekuivalen dinotasikan dengan " ". Dengan demikian bentuk x - 2 = 3; 2x - 4 = 6; dan x + 7 = 12 dapat dituliskan sebagai x - 2 = 3 2x - 4 = 6 x + 7 = 12. Jadi, berdasarkan uraian di atas maka dapat ditarik kesimpulan bahwa dua persamaan atau lebih dikatakan ekuivalen jika mempunyai himpunan
A. Dua Himpunan yang Sama Perhatikan contoh dibawah ini Ada dua himpunan yang memiliki anggota yang sama, yaitu himpunan A dan B. A = {u,b,i} dan B = {i,b,u} , maka u ∈ A dan u ∈ B, b ∈ A dan b ∈ B, serta i ∈ A dan i ∈ B. Dari himpunan A dan B, setiap anggota A sama dengan anggota pada himpunan B, maka kedua himpunan itu dikatakan sama. Jadi, dua himpunan A dan B sama jika setiap anggota A juga menjadi anggota B dan juga sebaliknya setiap anggota B juga menjadi anggota A. Yang perlu kita ketahui adalah himpunan bagian ditandai dengan lambang ⊂. Misalkan A = {u,b,i}, maka {u} ⊂ A, dapat dibaca bahwa himpunan tersebut memiliki anggota atau beranggotakan u dan ini yang disebut dengan himpunan bagian dari himpunan A, begitu juga dengan b dan juga i merupakan anggota dari himpunan A. Mari kita perhatikan gambar dibawah ini! Dari gambar di atas bisa kita ketahui bahwa anggota dari himpunan A dan B adalah sama. B. Himpunan Bagian Himpunan bagian adalah himpunan yang semua anggotanya ada di dalam himpunan tertentu. Misalkan seperti pada gambar dibawah ini Dari gambar diagram venn di atas, bisa kita liat bahwa B ⊂ A, namun A ⊄ B, tapi A ⊃ B ⊃ dibaca memuat. Jadi semua anggota B adalah anggota A, jadi B ⊂ A. C. Dua Himpunan Ekuivalen Dua Himpunan yang dapat berkorespondensi satu-satu dikatakan dua himpunan yang saling ekuivalen. Jadi, dua himpunan yang ekuivalen berarti banyak anggotanya sama. Jika dua himpunan itu A dan B maka nA = nB. Notasi untuk menulis ekuivalen yaitu ∼. Jadi kalau A ekuivalen B dapat di tulis seperti ini A ∼ B. Contoh diagram venn nya seperti dibawah ini Jadi berdasarkan gambar diagram venn diatas, maka dapat kita lihat bahwa kedua himpunan itu tidak mempunyai anggota sekutu namun kedua himpunan itu mempunyai anggota yang banyaknya sama. Sehingga dapat dikatakan kedua himpunan itu berkorespondensi satu-satu artinya dapat dipasangkan satu-satu. D. Himpunan yang Saling Lepas Mari kita perhatikan gambar diagram venn di atas, S = {0,1,2,3} A = {1,2} B = {3} Adakah anggota A yang menjadi anggota B? Atau apakah ada anggota B yang menjadi anggota A? Kalau kedua himpunan tidak memiliki anggota sekutu maka dua himpunan tersebut dikatakan saling lepas. Arti dari sekutu adalah anggota yang dipunyai kedua himpunan yang dimaksud. Hal itu terlihat pada gambar diatas, bahwa anggota A dan B tidak mempunyai anggota sekutu, maksudnya tidak satupun anggota yang dipunyai bersama oleh kedua himpunan itu. E. Himpunan yang Saling tidak Lepas Seperti yang kita perhatikan pada gambar di atas, itulah gambar diagram venn dari dua himpunan yang saling tidak lepas. S = {1,2,3} A = {1,2} B = {2,3} 2 ∈ A sekaligus ∈ B 1 ∈ A, 1 ∈ B 3 ∈ B, 3 ∈ A Jadi dapat kita lihat bahwa Dari dua himpunan A dan B, A ⊄ B dan sebaliknya, maka Ada anggota sekutu anggota yang dipunyai bersama oleh A dan B Ada anggota A yang bukan anggota B Ada anggota B yang bukan anggota A. Dua himpunan itu dikatakan tidak saling lepas. Selain itu juga dua himpunan yang sama juga dikatakan tidak lepas himpunan bagian juga dikatakan tidak saling lepas. Untuk memperdalam pemahaman kita tentang, mencantumkan satu contoh soal dibawah 1 Dari himpunan-himpunan berikut, manakah yang ekuivalen? a {nama-nama hari dalam seminggu} b {bilangan asli kurang dari 10} NQUcvp.